Epistatic Genetic Effects among Alzheimer’s Candidate Genes
نویسندگان
چکیده
BACKGROUND Novel risk variants for late-onset Alzheimer's disease (AD) have been identified and replicated in genome-wide association studies. Recent work has begun to address the relationship between these risk variants and biomarkers of AD, though results have been mixed. The aim of the current study was to characterize single marker and epistatic genetic effects between the top candidate Single Nucleotide Polymorphisms (SNPs) in relation to amyloid deposition. METHODS We used a combined dataset across ADNI-1 and ADNI-2, and looked within each dataset separately to validate identified genetic effects. Amyloid was quantified using data acquired by Positron Emission Tomography (PET) with (18)F-AV-45. RESULTS Two SNP-SNP interactions reached significance when correcting for multiple comparisons, BIN1 (rs7561528, rs744373) x PICALM (rs7851179). Carrying the minor allele in BIN1 was related to higher levels of amyloid deposition, however only in non-carriers of the protective PICALM minor allele. CONCLUSIONS Our results support previous research suggesting these candidate SNPs do not show single marker associations with amyloid pathology. However, we provide evidence for a novel interaction between PICALM and BIN1 in relation to amyloid deposition. Risk related to the BIN1 minor allele appears to be mitigated in the presence of the PICALM protective variant. In that way, variance in amyloid plaque burden can be better classified within the context of a complex genetic background. Efforts to model cumulative risk for AD should explicitly account for this epistatic effect, and future studies should explicitly test for such effects whenever statistically feasible.
منابع مشابه
Epistatic effects of multiple receptor genes on pathophysiology of asthma – its limits and potential for clinical application
To date, genome-wide association studies (GWAS) permit a comprehensive scan of the genome in an unbiased manner, with high sensitivity, and thereby have the potential to identify candidate genes for the prevalence or development of multifactorial diseases such as bronchial asthma. However, most studies have only managed to explain a small additional percentage of hereditability estimates, and o...
متن کاملAn epistatic genetic basis for physical activity traits in mice.
We recently identified several (4-8) quantitative trait loci (QTL) for 3 physical activity traits (daily distance, duration, and speed voluntarily run) in an F(2) population of mice derived from an original intercross of 2 strains that exhibited large differences in activity. These QTL cumulatively explained from 11% to 34% of the variation in these traits, but this was considerably less than t...
متن کاملDynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster.
Understanding the genetic architecture of complex traits requires identification of the underlying genes and characterization of gene-by-gene and genotype-by-environment interactions. Behaviors that mediate interactions between organisms and their environment are complex traits expected to be especially sensitive to environmental conditions. Previous studies on the olfactory avoidance response ...
متن کاملIdentification of Genetic Polymorphism Interactions in Sporadic Alzheimer’s Disease Using Logic Regression
Objectives: Genetic polymorphism interactions are among the important factors in affliction with complex diseases like Alzheimer’s disease. The important goal of genetic association studies is to identify a combination of polymorphisms and measure their importance in increasing the risk of occurrence of such diseases. In this study, feature selection approach of logic regression was used to ide...
متن کاملEpistatic partners of neurogenic genes modulate Drosophila olfactory behavior
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013